龙盟编程博客 | 无障碍搜索 | 云盘搜索神器
快速搜索
主页 > 软件开发 > C/C++开发 >

详谈Dijkstra算法

时间:2011-04-12 23:18来源:未知 作者:admin 点击:
分享到:
本文由单源最短路径路径问题开始,而后描述Bellman-Ford算法,到具体阐述 Dijkstra 算法,阐述详细剖析Dijkstra算法的每一个步骤,教你彻底理解此Dijkstra算法。 一、单源最短路径问题 我们

本文由单源最短路径路径问题开始,而后描述Bellman-Ford算法,到具体阐述Dijkstra算法,阐述详细剖析Dijkstra算法的每一个步骤,教你彻底理解此Dijkstra算法。

一、单源最短路径问题

我们知道,单源最短路径问题:已知图G=(V,E),要求找出从某个定源顶点s<-V,到每个v<-V的最短路径。简单来说,就是一个图G中,找到一个定点s,然后以s为起点,要求找出s到图G中其余各个点的最短距离或路径。

此单源最短路径问题有以下几个变形:

I、  单终点最短路径问题: 每个顶点v到指定终点t的最短路径问题。即单源最短路径问题的相对问题。

II、 单对顶点最短路径问题:给定顶点u和v,找出从u到v的一条最短路径。

III、每对顶点间最短路径问题:

针对任意每俩个顶点u和v,找出从u到v的最短路径。最简单的想法是,将每个顶点作为源点,运行一次单源算法即可以解决这个问题。当然,还有更好的办法。 

二、Bellman-Ford 算法

1、回路问题

一条最短路径不能包含负权回路,也不能包含正权回路。一些最短路径的算法,如Dijkstra 算法,要求图中所有的边的权值都是非负的,如在公路地图上,找一条从定点s到目的顶点v的最短路径问题。

2、Bellman-Ford 算法

而Bellman-Ford 算法,则允许输入图中存在负权边,只要不存在从源点可达的负权回路,即可。简单的说,图中可以存在负权边,但此条负权边,构不成负权回路,不影响回路的形成。且,Bellman-Ford 算法本身,便是可判断图中是否存在从源点可达的负权回路,若存在负权回路,算法返回FALSE,若不存在,返回TRUE。

Bellman-Ford 算法的具体描述

BELLMAN-FORD(G, w, s)

  1. INITIALIZE-SINGLE-SOURCE(G, s)   //对每个顶点初始化 ,O(V)   
  2. for i ← 1 to |V[G]| - 1  
  3.   do for each edge (u, v) ∈ E[G]  
  4. do RELAX(u, v, w)    //针对每个顶点(V-1个),都运用松弛技术O(E),计为O((v-1)*E))  
  5. for each edge (u, v) ∈ E[G]  
  6. do if d[v] > d[u] + w(u, v)  
  7. then return FALSE     //检测图中每条边,判断是否包含负权回路,  
  8.                                     //若d[v]>d[u]+w(u,v),则表示包含,返回FALSE,  
  9. return TRUE                      //不包含负权回路,返回TRUE  

Bellman-Ford 算法的时间复杂度,由上可得为O(V*E)。

3、关于判断图中是否包含负权回路的问题:

根据定理,我们假定,u是v的父辈,或父母,那么,当G(V,E)是一个有向图或无向图(且不包含任何负权回路),s<-V,s为G的任意一个顶点,则对任意边(u,v)<-V,有     

d[s,v] <= d[s,u]+1

此定理的详细证明,可参考算法导论一书上,第22章中引理22.1的证明。或者根据第24章中通过三角不等式论证Bellman-Ford算法的正确性,也可得出上述定理的变形。

即假设图G中不包含负权回路,可证得

  1. d[v]=$(s,u)  
  2.       <=$(s,u)+w(u,v)  //根据三角不等式  
  3.       =d[u]+w[u,v] 

所以,在不包含负权回路的图中,是可以得出d[v]<=d[u]+w(u,v)。

于是,就不难理解,在上述Bellman-Ford 算法中, if d[v] > d[u]+w(u,v),=> 包含负权回路,返回FASLE

else if =>不包含负权回路,返回TRUE。

ok,咱们,接下来,立马切入Dijkstra 算法。

三、深入浅出,彻底解剖Dijkstra 算法

I、松弛技术RELAX的介绍

Dijkstra 算法使用了松弛技术,对每个顶点v<-V,都设置一个属性d[v],用来描述从源点s到v的最短路径上权值的上界,
称为最短路径的估计。

首先,得用O(V)的时间,来对最短路径的估计,和对前驱进行初始化工作。

  1. INITIALIZE-SINGLE-SOURCE(G, s)  
  2.  for each vertex v ∈ V[G]  
  3.   do d[v] ← ∞  
  4.    π[v] ← NIL      //O(V)  
  5. d[s] 0  
  6.  
  7. RELAX(u, v, w)  
  8. if d[v] > d[u] + w(u, v)  
  9.  then d[v] ← d[u] + w(u, v)  
  10.   π[v] ← u        //O(E)图。 

II、Dijkstra 算法

此Dijkstra 算法分三个步骤,INSERT (第3行), EXTRACT-MIN (第5行), 和DECREASE-KEY(第8行的RELAX,调用此减小关键字的操作)。

  1. DIJKSTRA(G, w, s)  
  2.  INITIALIZE-SINGLE-SOURCE(G, s)    //对每个顶点初始化 ,O(V)   
  3.  S ← Ø  
  4.  Q ← V[G]            //INSERT,O(1)  
  5.  while Q ≠ Ø  
  6.    do u ← EXTRACT-MIN(Q)        //简单的O(V*V);二叉/项堆,和FIB-HEAP的话,则都为O(V*lgV)。      
  7.  S ← S ∪{u}  
  8.      for each vertex v ∈ Adj[u]  
  9.           do RELAX(u, v, w)      //简单方式:O(E),二叉/项堆,E*O(lgV),FIB-HEAP,E*O(1)。 

四、Dijkstra 算法的运行时间

在继续阐述之前,得先声明一个问题,DIJKSTRA(G,w,s)算法中的第5行,EXTRACT-MIN(Q),最小优先队列的具体实现。而Dijkstra 算法的运行时间,则与此最小优先队列的采取何种具体实现,有关。

最小优先队列三种实现方法:

1、利用从1至|V| 编好号的顶点,简单地将每一个d[v]存入一个数组中对应的第v项,如上述DIJKSTRA(G,w,s)所示,Dijkstra 算法的运行时间为O(V^2+E)。

2、如果是二叉/项堆实现最小优先队列的话,EXTRACT-MIN(Q)的运行时间为O(V*lgV),所以,Dijkstra 算法的运行时间为O(V*lgV+E*lgV),若所有顶点都是从源点可达的话,O((V+E)*lgV)=O(E*lgV)。当是稀疏图时,则E=O(V^2/lgV),此Dijkstra 算法的运行时间为O(V^2)。

3、采用斐波那契堆实现最小优先队列的话,EXTRACT-MIN(Q)的运行时间为O(V*lgV),所以,此Dijkstra 算法的运行时间即为O(V*lgV+E)。

综上所述,此最小优先队列的三种实现方法比较如下:


精彩图集

赞助商链接