经典四讲贯通C++排序之四 选择排序(1)
我们都知道C++排序方法中,有四种常用方法插入排序、希尔排序、交换排序以及选择排序。这篇文章我们介绍选择排序。(本系列文章统一 测试程序)
选择排序
基本思想是:每次选出第i小的记录,放在第i个位置(i的起点是0,按此说法,第0小的记录实际上就是最小的,有点别扭,不管这么多了)。当i=N-1时就排完了。
直接选择排序
直选排序简单的再现了选择排序的基本思想,第一次寻找最小元素的代价是O(n),如果不做某种特殊处理,每次都使用最简单的寻找方法,自然的整个排序的时间复杂度就是O(n2)了。
- template <class T>
- void SelectSort(T a[], int N, int& KCN, int& RMN)
- {
- KCN = 0; RMN = 0;
- for (int i = 0; i < N; i++)
- {
- for (int j = i + 1, k = i; j < N; j++) if (++KCN && a[j] < a[k]) k = j;//select min
- if (k != i) { swap(a[k], a[i]); RMN += 3; }
- }
- }
测试结果:
- Sort ascending N=10000 TimeSpared: 721ms
- KCN=49995000 KCN/N=4999.5 KCN/N^2=0.49995 KCN/NlogN=376.25
- RMN=0 RMN/N=0 RMN/N^2=0 RMN/NlogN=0
- Sort randomness N=10000 TimeSpared: 711ms
- KCN=49995000 KCN/N=4999.5 KCN/N^2=0.49995 KCN/NlogN=376.25
- RMN=29955 RMN/N=2.9955 RMN/N^2=0.00029955 RMN/NlogN=0.225434
- Sort descending N=10000 TimeSpared: 711ms
- KCN=49995000 KCN/N=4999.5 KCN/N^2=0.49995 KCN/NlogN=376.25
- RMN=15000 RMN/N=1.5 RMN/N^2=0.00015 RMN/NlogN=0.112886
可以看到KCN固定为n(n-1)/2。另外一件有趣的事是,RMN=0的正序花的时间居然比RMN接近3(n-1)的乱序还多。一是说明测试精度不够,在我的机器上多次测试结果上下浮动10ms是常有的事;二是说明和KCN的n(n-1)/2相比,RMN的3(n-1)有些微不足道。
- 上一篇:C/C++中的指针的应用及注意问题
- 下一篇:C++的输出格式控制技巧分析